EDIM®, PanTum Detect®, TKTL1, DNaseX (Apo10)


Zeberg, H.; Jakobsson, M.; & Pääbo, S. The genetic changes that shaped Neandertals, Denisovans, and modern humans. Cell, S0092-8674(23)01403-4. Advance online publication. 2024


Brito-Rocha T., H.; Constâncio V..; Henrique R.; Jerónimo C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests | Cells 2023

Shiming, H.; Qingfei M.; Huihui S.; et al. Human papillomavirus type 16 E6 promotes cervical cancer proliferation by upregulating transketolase enzymatic activity through the activation of protein kinase B. | Wiley Online Libaray 2023

Xie, C.; Wang, S.; Guo, C. et al. Apo10 and TKTL1 in blood macrophages as biomarkers for differentiating lung cancer from benign lung lesions: a comparative study with conventional biomarkers. | Cellular Oncology 2023

Burg, S.; Smeets, R.; Gosau, M.; Failing, K.; Grust, A. Case Report: Early detection of lung carcinoid in an asymptomatic individual by blood-test initiated PET-CT imaging. | Frontiers in Oncology 2023

Brito-Rocha, T.; Constâncio, V.; Henrique, R.; & Jerónimo, C. Shifting the Cancer Screening Paradigm: The Rising Potential of Blood-Based Multi-Cancer Early Detection Tests. Cells12(6), 935. 2023


Li, Y.; Xu, C.; Wang, B.; Xu, F.; Ma, F. et al.: Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals new therapeutic strategies. | nature communications 2022

Pinson, A.; Xing, L.; Xinnan, L.; Namba, T.; Kalebic, N; Peters, J. et al. Human TKTL1 implies greater neurogenesis in frontal neocortex of modern humans than Neanderthals. | Science 2022

Liu, Q.; Fangming, Z.; Xinnan, L.; Ying, L.; Ke, Y.; Na, T.; et al. Non-oxidative pentose phosphate pathway controls regulatory T cell function by integrating metabolism and epigenetics. | nature metabolism 2022

Hao, S.; Qingfei, M.; Huihui, S.; Yunkuo, L.; Yao, L.; et al. The role of transketolase in human cancer progression and therapy. | Elsevier 2022

Urla, C.; Stagno, M.J.; Schmidt, A.; Handgretinger, R.; Fuchs, J.; Warmann, S.W.; Schmid, E. Epitope Detection in Monocytes (EDIM) As a New Method of Liquid Biopsy in Pediatric Rhabdomyosarcoma. | Biomedicines 2022

Burg, S.; Grust, ALC.; Feyen, O.; Failing, K.; Banat, G-A.; Coy, JF. et al. Blood-Test Based Targeted Visualization Enables Early Detection of Premalignant and Malignant Tumors in Asymptomatic Individuals. | Journal of Clinical and Medical Images 2022;6.

Stagno, M.; Schmidt, A.; Bochem, J. et al. Epitope detection in monocytes (EDIM) for liquid biopsy including identification of GD2 in childhood neuroblastoma—a pilot study. | British Journal of Cancer 2022;7.

Baptista, I.; Karakitsou, E.; Cazier, J-B.; Günther, UL.; Marin, S.; Cascante, M. TKTL1 Knockdown Impairs Hypoxia-Induced Glucose-6-phosphate Dehydrogenase and Glyceraldehyde-3-phosphate Dehydrogenase Overexpression. | International Journal of Molecular Sciences 2022;23:3574.

Li, M.; Zhao, X.; Yong, H.; Xu, J.; Qu, P.; Qiao, S. et al. Transketolase promotes colorectal cancer metastasis through regulating AKT phosphorylation. | Cell Death & Disease 2022;13:99.

Niu, C.; Qiu, W.; Li, X.; Li, H.; Zhou, J.; Zhu, H. Transketolase Serves as a Biomarker for Poor Prognosis in Human Lung Adenocarcinoma. | Journal of Cancer 2022;13:2584–93.

Zhang, L.; Huang, Z.; Cai, Q.; Zhao, C.; Xiao, Y.; Quan, X. et al. Inhibition of Transketolase Improves the Prognosis of Colorectal Cancer. | Frontiers in Medicine 2022;9:837143.


He, X.; Ding, J.; Cheng, X.; Xiong, M. Hypoxia-Related Gene-Based Signature Can Evaluate the Tumor Immune Microenvironment and Predict the Prognosis of Colon Adenocarcinoma Patients. International Journal of General Medicine 2021;14:9853–62.

Wang, J.; Li, Y.; Zhang, C.; Chen, X.; Zhu, L.; Luo, T. A hypoxia-linked gene signature for prognosis prediction and evaluating the immune microenvironment in patients with hepatocellular carcinoma. Translational Cancer Research 2021;10:3979–92.

Zhu, Y.; Qiu, Y.; Zhang, X. TKTL1 participated in malignant progression of cervical cancer cells via regulating AKT signal mediated PFKFB3 and thus regulating glycolysis. Cancer Cell International 2021;21:678.

Ahopelto, K.; Saukkonen, K.; Hagström, J.; Kauhanen, S.; Seppänen, H.; Böckelman, C. et al. TKTL1 as a Prognostic Marker in Pancreatic Ductal Adenocarcinoma and Its Correlation with FDG-PET-CT. Oncology 2021;99:177–85.

Cymbaluk-Płoska, A.; Chudecka, K.; Chudecka-Głaz, A.; Piotrowska, K.; Kwiatkowski, S.; Tarnowski, M. Importance of Potential New Biomarkers in Patient with Serouse Ovarian Cancer. Diagnostics (Basel). 2021;11:1026.


Saman, S.; Stagno, MJ.; Warmann, SW.; Malek, NP.; Plentz, RR.; Schmid, E. Biomarkers Apo10 and TKTL1: Epitope-detection in monocytes (EDIM) as a new diagnostic approach for cholangiocellular, pancreatic and colorectal carcinoma. Cancer Biomark 2020;27:129–37.

Peltonen, R.; Ahopelto, K.; Hagström, J.; Böckelman, C.; Haglund, C.; Isoniemi, H. High TKTL1 expression as a sign of poor prognosis in colorectal cancer with synchronous rather than metachronous liver metastases. Cancer Biology & Therapy 2020;21:826–31.

Sequeda-JuÁrez, A.; JimÉnez, A.; Espinosa-Montesinos, A.; Del Carmen Cardenas-Aguayo, M.; RamÓn-Gallegos, E. Use of AKR1C1 and TKTL1 in the Diagnosis of Low-grade Squamous Intraepithelial Lesions from Mexican Women. Anticancer Research 2020;40:6273–84.

Ahopelto, K.; Laitinen, A.; Hagström, J.; Böckelman, C.; Haglund, C. Transketolase-Like Protein 1 and Glucose Transporter 1 in Gastric Cancer. Oncology 2020;98:643–52.

Van Gool, S. W.; Makalowski, J.; Bonner, E. R.; Feyen, O.; Domogalla, M. P.; Prix, L.; Schirrmacher, V.; Nazarian, J.; & Stuecker, W. . Addition of Multimodal Immunotherapy to Combination Treatment Strategies for Children with DIPG: A Single Institution Experience. Medicines (Basel, Switzerland)7(5), 29.


Chiarini, A.; Liu, D.; Rassu, M.; Armato, U.; Eccher, C.; Dal, Prà.; I. Over Expressed TKTL1, CIP-2A, and B-MYB Proteins in Uterine Cervix Epithelium Scrapings as Potential Risk Predictive Biomarkers in HR-HPV-Infected LSIL/ASCUS Patients. Frontiers Oncology 2019;9.

Li, Y.; Yao, C-F.; Xu, F-J.; Qu, Y-Y.; Li, J-T.; Lin, Y. et al. APC/CCDH1 synchronizes ribose-5-phosphate levels and DNA synthesis to cell cycle progression. Nature Communications 2019;10:2502.

Liang, Y.; Song, J.; He, D.; Xia, Y.; Wu, Y.; Yin, X. et al. Systematic analysis of survival‐associated alternative splicing signatures uncovers prognostic predictors for head and neck cancer. Journal of Cellular Physiology 2019;234:15836–46.

Zhao, M.; Ye, M.; Zhou, J.; Zhu, X. Prognostic values of transketolase family genes in ovarian cancer. Oncology Letters 2019;18:4845–57.


Zheng, X.; Li, H.: TKTL1 modulates the response of paclitaxel-resistant human ovarian cancer cells to paclitaxel. Biochemical and Biophysical Research Communications 2018

Heller, S.; Maurer, G.D.; Wanka, C.; Hofmann, U.; Luger, A.; Bruns, I. et al.: Gene Suppression of Transketolase-Like Protein 1 (TKTL1) Sensitizes Glioma Cells to Hypoxia and Ionizing Radiation. International Journal of Molecular Sciences 2018


Todenhöfer, T.; Hennenlotter, J.; Keller, G.; Neumann, T.; Stenzl, A.; Bedke, J. Effect of radical prostatectomy on levels of cancer related epitopes in circulating macrophages of patients with clinically localized prostate cancer. Prostate 2017 Sep;77(12):1251-1258. doi: 10.1002/pros.23384. Epub 2017 Jul 20. PMID: 28726251.

Coy, JF. EDIM-TKTL1/Apo10 Blood Test: An Innate Immune System Based Liquid Biopsy for the Early Detection, Characterization and Targeted Treatment of Cancer. International Journal of Molecular Sciences 2017;18:878–95.

Burrai, GP.; Tanca, A.; Cubeddu, T.; Abbondio, M.; Polinas, M.; Addis, MF. et al. A first immunohistochemistry study of transketolase and transketolase-like 1 expression in canine hyperplastic and neoplastic mammary lesions. BMC Veterinary Research 2017;13:38.

Dong, Y.; Wang, M.: Knockdown of TKTL1 additively complements cisplatin-induced cytotoxicity in nasopharyngeal carcinoma cells by regulating the levels of NADPH and ribose-5-phosphate. Biomedicine & Pharmacotherapy 2017;85


Grimm, M.; Hoefert, S.; Krimmel, M.; Biegner, T.; Feyen, O.; Teriete, P. et al. Monitoring carcinogenesis in a case of oral squamous cell carcinoma using a panel of new metabolic blood biomarkers as liquid biopsies. Journal of Oral and Maxillofacial Surgery 2016;20:295–302.

Diaz-Moralli, S.; Aguilar, E.; Marin, S.; Coy, JF.; Dewerchin, M.; Antoniewicz, MR. et al. A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget 2016;7:51875–97.

Grimm, M.; Feyen, O.; Coy, JF.; Hofmann, H.; Teriete, P.; Reinert, S. Analysis of circulating CD14+/CD16+ monocyte-derived macrophages (MDMs) in the peripheral blood of patients with oral squamous cell carcinoma. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology 2016;121:301–6.

Jayachandran, A.; Lo, P-H.; Chueh, AC.; Prithviraj, P.; Molania, R.; Davalos-Salas, M. et al. Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells. BMC Cancer 2016;16:134.

Xu, IM-J.; Lai, RK-H.; Lin, S-H.; Tse, AP-W.; Chiu, DK-C.; Koh, H-Y. et al. Transketolase counteracts oxidative stress to drive cancer development. Proceedings of the National Academy of Sciences of the United States of America 2016;113:E725.

Grimm, M.; Kraut, W.; Hoefert, S.; Krimmel, M.; Biegner, T.; Teriete, P. et al. Evaluation of a biomarker based blood test for monitoring surgical resection of oral squamous cell carcinomas. Clinical Oral Investigations 2016;20:329–38.

Ahopelto, K.; Böckelman, C.; Hagström, J.; Koskensalo, S.; Haglund, C. Transketolase-like protein 1 expression predicts poor prognosis in colorectal cancer. Cancer Biology & Therapy 2016;17:163–8.

Liberti, MV.; Locasale, JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. 2016;41:211–8.

Tsaur, I.; Thurn, K.; Juengel, E.; Oppermann, E.; Nelson, K.; Thomas, C. et al. Evaluation of TKTL1 as a biomarker in serum of prostate cancer patients. Central European Journal of Urology 2016;69:247–51.


Song, Y.; Liu, D.; He, G. TKTL1 and p63 are biomarkers for the poor prognosis of gastric cancer patients. Cancer Biomark 2015;15:591–7.

Li, J.; Zhu, S-C.; Li, S-G.; Zhao, Y.; Xu, J-R.; Song, C-Y. TKTL1 promotes cell proliferation and metastasis in esophageal squamous cell carcinoma. Biomed Pharmacother 2015;74:71–6.

Ricciardelli, C.; Lokman, NA.; Cheruvu, S.; Tan, IA.; Ween, MP.; Pyragius, CE. et al. Transketolase is upregulated in metastatic peritoneal implants and promotes ovarian cancer cell proliferation. Clinical and Experimental Metastasis 2015;:1–15.

Shi, Z.; Tang, Y.; Li, K.; Fan, Q. TKTL1 expression and its downregulation is implicated in cell proliferation inhibition and cell cycle arrest in esophageal squamous cell carcinoma. Tumor Biology 2015;36:8519–29.

Benito, A.; Diaz-Moralli, S.; Coy, JF.; Centelles, JJ.; Cascante, M. Role of the Pentose Phosphate Pathway in Tumour Metabolism. In: Mazurek S, Shoshan M, editors. Tumor Cell Metabolism: Pathways, Regulation and Biology. Vienna: Springer 2015. p. 143–63.

Kämmerer, U.; Gires, O.; Pfetzer, N.; Wiegering, A.; Klement, RJ.; Otto, C. TKTL1 expression in human malign and benign cell lines. BMC Cancer 2015;15:2.


Li, B.; Iglesias-Pedraz, JM.; Chen, L-Y.; Yin, F.; Cadenas, E.; Reddy, S, et al. Downregulation of the Werner syndrome protein induces a metabolic shift that compromises redox homeostasis and limits proliferation of cancer cells. Aging Cell 2014;13:367–78.

Grimm, M.; Cetindis, M.; Lehmann, M.; Biegner, T.; Munz, A.; Teriete, P. et al. Association of cancer metabolism-related proteins with oral carcinogenesis – indications for chemoprevention and metabolic sensitizing of oral squamous cell carcinoma? Journal of Translational Medicine 2014;12:208.

Grimm, M.; Cetindis, M.; Lehmann, M.; Biegner, T.; Munz, A.; Teriete, P. et al. Apoptosis resistance-related ABCB5 and DNaseX (Apo10) expression in oral carcinogenesis. Acta Odontologica Scandinavica 2014;:1–7.

Grimm, M.; Munz, A.; Teriete, P.; Nadtotschi, T.; Reinert, S. GLUT-1+/TKTL1+ coexpression predicts poor outcome in oral squamous cell carcinoma. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 2014;117:743–53.

Japink, D.; Nap, M.; Sosef, MN.; Nelemans, PJ.; Coy, JF.; Beets, G. et al. Reproducibility studies for experimental epitope detection in macrophages (EDIM). Journal of Immunological Methods 2014;407:40–7.


Grimm, M.; Schmitt, S.; Teriete, P.; Biegner, T.; Stenzl, A.; Hennenlotter, J. et al. A biomarker based detection and characterization of carcinomas exploiting two fundamental biophysical mechanisms in mammalian cells. BMC Cancer 2013;13:569–86.

Grimm, M.; Hoefert, S.; Luz, O.; Reinert, S.; Polligkeit, J. Transketolase-like protein 1 expression in recurrent oral squamous cell carcinoma after curative resection: a case report. Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology 2013;116:e173-178.

Jansen, N.; Coy, JF. Diagnostic use of epitope detection in monocytes blood test for early detection of colon cancer metastasis. Future Oncology. 2013;9:605–9.

Bentz, S.; Cee, A.; Endlicher, E.; Wojtal, KA.; Naami, A.; Pesch, T. et al. Hypoxia induces the expression of transketolase-like 1 in human colorectal cancer. Digestion. 2013;88:182–92.

Rotmann, A. The use of new diagnostic tests for the monitoring of new and existing therapies for breast cancer patients. JCO 2013;31 15_suppl:e22006–e22006.


Feyen, O.; Coy, JF.; Prasad, V.; Schierl, R.; Saenger, J.; Baum, RP. EDIM-TKTL1 blood test: a noninvasive method to detect upregulated glucose metabolism in patients with malignancies. Future Oncology 2012;8:1349–59.

Lange, CA.; Tisch-Rottensteiner, J.; Böhringer, D.; Martin, G.; Schwartzkopff, J.; Auw-Haedrich, C. Enhanced TKTL1 expression in malignant tumors of the ocular adnexa predicts clinical outcome. Ophthalmol 2012;119:1924–9.

Wanka, C.; Steinbach, JP.; Rieger, J. Tp53-induced Glycolysis and Apoptosis Regulator (TIGAR) Protects Glioma Cells from Starvation-induced Cell Death by Up-regulating Respiration and Improving Cellular Redox Homeostasis. Journal of Biological Chemistry 2012;287:33436–46.

Wani, K.; Armstrong, T.; Vera-Bolanos, E.; Raghunathan, A.; Ellison, D.; Gilbertson, R. et al. A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 2012;123:727–38.

Rotmann, AR.; Coy, J. Apo10 – a new biomarker for early detection of disorders of cell proliferation and solid tumours. ABSTRACT FIGO 2012.


Kayser, G.; Sienel, W.; Kubitz, B.; Mattern, D.; Stickeler, E.; Passlick, B. et al. Poor outcome in primary non-small cell lung cancers is predicted by transketolase TKTL1 expression. Pathology 2011;43:719–24.

Schwaab, J.; Horisberger, K.; Ströbel, P.; Bohn, B.; Gencer, D.; Kähler, G. et al. Expression of Transketolase like gene 1 (TKTL1) predicts disease-free survival in patients with locally advanced rectal cancer receiving neoadjuvant chemoradiotherapy. BMC Cancer. 2011;11:363.

Diaz-Moralli, S.; Tarrado-Castellarnau, M.; Alenda, C.; Castells, A.; Cascante, M. Transketolase-Like 1 Expression Is Modulated during Colorectal Cancer Progression and Metastasis Formation. PLoS One 2011;6.

Hartmannsberger, D.; Mack, B.; Eggert, C.; Denzel, S.; Steph, H.; Betz, CS. et al. Transketolase-like protein 1 confers resistance to serum withdrawal in vitro. Cancer Lett 2011;300:20–9.

Arnhold, J. Therapy monitoring and early detection of metastasis using tumor protein detection in macrophages. Anticancer Research 2011;31:2012.

Bentz, S.; Pesch, T.; Wolfram, L.; Vallière, C de.; Leucht, K.; Fried, M. et al. Lack of transketolase-like (TKTL) 1 aggravates murine experimental colitis. American Journal of Physiology – Gastrointestinal and Liver Physiology 2011;300:G598–607.